St Paul's CE Primary School

New NC Whole School Written Calculation Policy Pencil and Paper Procedures

PROGRESSION OF NUMBERLINES

Pre-national curriculum level	Number track	Has the numbers inside the sections, rather than on the divisions	0	1	2	3	4	5	6	7	8	9	10
Low Stage 1	Calibrated, numbered numberline	Equal divisions marked on the numberline and each division is numbered						5	6	7	8		10
Secure Stage 1	Calibrated, unnumbered numberline	Equal divisions are marked, but left unnumbered for children to add relevant numbers to											
Stage 2	Blank numberline	No divisions or numbers marked for the children											

Calculation Guidelines for Foundation Stage			
ADDITION	SUBTRACTION	MULTIPLICATION	DIVISION
Children begin to record in the context of play or practical activities and problems.			
Begin to relate addition to combining two groups of objects - Make a record in pictures, words or symbols of addition activities already carried out. - Construct number sentences to go with practical activities - Use of games, songs and practical activities to begin using vocabulary Solve simple word problems using their fingers $5+1=6$ Can find one more to ten. Higher Ability/ Gifted and Talented children progress to using a number line. They jump forwards along the number line using finger. $5+3=8$	Begin to relate subtraction to 'taking away' - Make a record in pictures, words or symbols of subtraction activities already carried out - Use of games, songs and practical activities to begin using vocabulary - Construct number sentences to go with practical activities - Relate subtraction to taking away and counting how many objects are left. $5-1=4$ Can find one less to ten. Higher Ability/ Gifted and Talented Progression: $8-3=5$ Counting backwards along a number line using finger.	Real life contexts and use of practical equipment to count in repeated groups of the same size: - Count in twos; fives; tens Also chanting in $2 \mathrm{~s}, 5 \mathrm{~s}$ and 10 s .	Share objects into equal groups Use related vocabulary Activities might include: Sharing of milk at break time Sharing sweets on a child's birthday Sharing activities in the home corner Count in tens/twos Separate a given number of objects into two groups (addition and subtraction objective in reception being preliminary to multiplication and division) Count in twos, tens How many times? How many are left/left over? Group Answer Right, wrong What could we try next? How did you work it out? Share out Half, halve

[^0]| Addition | | |
| :---: | :---: | :---: |
| Stage 4 | Stage 5 | Stage 6 |
| $+=$ signs and missing numbers
 Continue using a range of equations as in Stage1 and 2 but with appropriate numbers.
 Pencil and paper procedures (turn lined books on side for columns) $83+42=125$
 units first $\begin{array}{r} 83 \\ +42 \\ \hline 5 \\ \frac{120}{125} \end{array}$
 NB vocab: use $40+80$, not $4+8$ $\begin{array}{r} 358 \\ +\quad 73 \\ \hline 11 \\ 120 \\ 300 \\ \hline 431 \end{array}$ | $\pm=$ signs and missing numbers
 Continue using a range of equations as in Stage1 and 2 but with appropriate numbers.
 Pencil and paper procedures
 Leading to formal method, showing numbers carried underneath $\begin{array}{r} 358 \\ +\quad 73 \\ \hline 431 \\ \hline 11 \end{array}$
 Extend to numbers with at least four digits $\begin{aligned} & 3587 \\ &+\frac{675}{4262} \\ & \hline 111 \end{aligned}$
 Extend to decimals (same number of decimals places) and adding several numbers (with different numbers of digits). Model negative numbers using a number line. | $\pm=$ signs and missing numbers
 Continue using a range of equations as in Stage1 and 2 but with appropriate numbers.
 Pencil and paper procedures
 Extend to numbers with any number of digits and decimals with 1 and 2 decimal places. $124.9+117.25=242.15$ $\begin{array}{r} 124.90 \text { add in a zero to keep the place value } \\ +\frac{117.25}{\frac{242.15}{11}} \end{array}$ |

[^1]

Multiplication		
Stage 1	Stage 2	Stage 3
Pictures and symbols There are 3 sweets in one bag. How many sweets are there in 5 bags? (Recording on a number line modelled by the teacher when solving problems) Use of bead strings to model groups of.	Arrays and repeated addition $\bullet \bullet \bullet \quad 4 \times 2$ or $4+4$ 2×4 or repeated addition $2+2+2+2$ Doubling multiples of 5 up to 50 $15 \times 2=30$ Partition $\begin{gathered} (10 \times 2)+(5 \times 2) \\ 20+10=30 \end{gathered}$	$x=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Number lines 6×3 $35 \times 2=70$ Partition $=70$

[^2]

Division		
Stage 1	Stage 2	Stage 3
Pictures / marks 12 children get into teams of 4 to play a game. How many teams are there?	$\doteqdot=$ signs and missing numbers $\begin{array}{rlr} 6 \div 2= & =6 \div 2 \\ 6 \div 3 & 3=6 \div \\ \div 2=3 & 3=6 \div 2 \\ \div \nabla=3 & 3=\div \nabla \end{array}$ Understand division as sharing and grouping Sharing - 6 sweets are shared between 2 people. How many do they have each? $6 \div 2$ can be modelled as: Grouping - There are 6 sweets. How many people can have 2 each? (How many 2 s make 6?)	$\div=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Understand division as sharing and grouping $18 \div 3$ can be modelled as: Sharing - 18 shared between 3 (see Level 2 diagram) Grouping - How many 3 s make 18 ? Remainders $16 \div 3=5 r 1$ Sharing - 16 shared between 3, how many left over? Grouping - How many 3s make 16, how many left over? e.g.

Division		
Stage 4	Stage 5	Stage 6
$\doteqdot=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Sharing and grouping $30 \div 6$ can be modelled as: grouping - groups of 6 taken away and the number of groups counted e.g. sharing - sharing among 6, the number given to each person $41 \div 4=10 r 1$	$\doteqdot=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Remainders Quotients expressed as fractions or decimal fractions $61 \div 4=151 / 4$ or 15.25 Quotients expressed as fractions or decimal fractions $676 \div 8=84.5$ Pencil and paper procedures BUS STOP METHOD Chunking $256 \div 7$ lies between $210 \div 7=30$ and $280 \div 7=40$ * Partition the dividend into multiples of the divisor: e.g. $\quad 256=210+46$ $\begin{aligned} 210 \div 7 & =30 \\ 46 \div 7 & =6 \mathrm{r} 4 \rightarrow 30+6 \mathrm{r} 4=36 \mathrm{r} 4 \end{aligned}$ $\begin{array}{ll} \text { OR } & \\ -\frac{256}{46} & \\ -\frac{210}{4} & \text { (30 groups) } \\ -\frac{42}{4} & \end{array}$	$\doteqdot=$ signs and missing numbers Continue using a range of equations as in Stage 2 but with appropriate numbers. Remainders Pencil and paper procedures Long Division To calculate 748 divided by 51 : $51 \overline{748}$ We work out 74 divided by 51 , and write the answer (1) above the 4 . $5 1 \longdiv { 1 }$ $\begin{array}{r}.51 \\ \hline 23\end{array}$ $1 \times 51=51$, so we write this underneath 74 . Subtract 51 from 74 to get the remainder (23). $\frac{1}{51} 7748$ We now bring down the next digit (8) and write it on the end of the 23. $\begin{array}{r}.51 \\ \hline 238\end{array}$ $\frac{14}{5 1 \longdiv { 7 4 8 }}$ We now work out 238 divided by 51 , and write the answer (4) above the 8 . You use $\frac{.51}{238}$ $\frac{-204}{34}$ estimation skills here: 51 is roughly 50 and $4 \times 50=200$. You can work out $51 \times 4=204$ separately. We write 204 underneath the 238 and subtract to find the remainder. There are no more digits to bring down and 51 cannot go into 34 , so we have our answer: 14 remainder 34.

[^0]: St Paul's CE Primary School Calculation Policy 2014

[^1]: St Paul's CE Primary School Calculation Policy 2014

[^2]: St Paul's CE Primary School Calculation Policy 2014

