Maths Passport at St Paul's CE Primary School

Since the introduction of the 2014 National Curriculum for Maths there is a very clear emphasis on the importance of children knowing their number facts and times tables thoroughly and having instant recall of this information. The expectation outlined in the National Curriculum is that children will 'recall multiplication and division facts for multiplication tables up 12×12 ' by the end of Year 4 , in preparation for the Multiplication Tables Check. Consequently, we have introduced a new mental Maths programme called 'Maths Passports', starting in Nursery and progressing through to Year 6.

Maths Passports are a personalised way of learning as the children are challenged in the passport at a level that is appropriate for the level they are working at. They progress at their own speed onto the next stage. Each child will be given a passport with a series of targets. These targets get progressively more challenging through the school. The children will develop instant recall skills in all the objectives - they should not be taking time to work out the answer to each question.

The aim is for children to complete all the passports by the time they are in Year 6.

1. The passport targets are incorporated into the children's oral and mental starters on a regular basis.
2. Children are assessed at least once a week. This might be in the form of answering questions orally, or by a timed task.
3. When children have met an objective on three separate occasions, the target has been achieved.
4. Children will continue to practice and be assessed on the remaining targets until all of the targets for a passport have been achieved. They will receive a certificate for this achievement during our weekly Celebration Assembly. They can then move on to the next passport and a new set of targets.

How to help at home

We would ask that you spend 10 minutes each day practising your child's passport skills with them. This could be walking to school, in the car, at teatime, before bed - it doesn't need to be a sit down, formal time.

The document below explains what each of the targets mean and how to help your child achieve them. There is also a selection of websites outlined below which can help your child develop their instant recall of key number facts and times tables.

Times Tables

https://ttrockstars.com/
https://www.topmarks.co.uk/maths-games/hit-the-button

Number Bonds

https://www.ictgames.com/mobilePage/numberFacts.html
https://www.topmarks.co.uk/maths-games/hit-the-button

Doubling and Halving

http://www.ictgames.com/robindoubles.html
http://www.topmarks.co.uk/Flash.aspx?f=dartboarddoublesandhalves
http://www.ictgames.com/woodseasy.html
https://www.topmarks.co.uk/maths-games/hit-the-button

Fractions decimals and percentages

http://www.topmarks.co.uk/maths-games/7-11-years/fractions-and-decimals
http://nrich.maths.org/1249
httphttp://www.topmarks.co.uk/interactive.aspx?cat=1://resources.woodlands -junior.kent.sch.uk/maths/fractions/

Counting

http://www.topmarks.co.uk/interactive.aspx?cat=1

Packing your Suitcase	Examples	Can your child answer these questions?
I can say number names in play and song etc.		When playing, can your child talk about how number/ how many of something there is?
I know that a number represents how many of something there is.	Can you show me 3 pencils?	
I can count up to 3 items accurately.	Can you show me 6 socks?	

Ready to Explore	Examples	Can your child answer these questions?
I can recite numbers in order to 10.	$1,2,3,4 \ldots . .9,10$	Can you start counting from 1?
I can recognise some familiar numerals.		What number is this?
I can match some numerals to quantities		Show your child some written numbers. Ask child to match card to the correct group of items.
I can identify groups of up to 3 objects without counting		How many__ are here? (child can tell you without counting)
I can begin to make mathematical mark making.		Can you write the number 1? Can you draw 3 fish?

Brentford	Examples	Can your child answer these questions?
I can identify how many are in a group up to 5 without counting		How many____re here? (child can tell you without counting)
I can count a group of objects beyond 10		How many__are here?
I can match numerals to an amount up to 10		Show your child some written numbers. Ask child to match card to the correct group of items.
I can place numbers up to 10 in order	Show your child some written numbers. Ask child to match card to the correct group of items.	
I can compare amounts up to 10 saying which has more and less	How many__ are here? Which group has more? How do you know?	
I know my number bonds up to 5	$0+5=5$ $1+4=5$ $2+3=5$ $3+2=5$ $4+1=5$ $5+0=5$	What is $2+3 ?$ Start with 4 pencils, place one more pencil in the group. How many pencils are there now? (child can tell you without recounting)

London	Examples	Can your child answer these questions?
I can count up from 0 to 20		Start at the number 7, and then count on until you reach 20. How many marbles are in this jar?
I can count back from 20 to 0		Start at the number 18, and then count back until you reach 0 .
I can say one more than a number between 0 and 20	One more than 3 is 4 . One more than 18 is 19.	What is one more than \qquad ? There are 3 beads in the pot. I am putting one more bead into the pot- how many are there now?
I can say one less than a number between 0 and 20	One less than 7 is 6 . One less than 14 is 13.	What is one less than \qquad ? There are seven beads in the pot. I am taking one bead out of the pot now - how many are left?
I know my doubles facts to 10	Double 1 is 2 Double 2 is 4 Double 3 is 6 Double 4 is 8 Double 5 is 10	There are three eggs in this pile, and three eggs in that pile, so how many eggs are there altogether?
I can share groups of objects to 10 equally	10 shared between 2 is 5 . 8 shared between to is 4	Here are 6 sweets, can you share them between you and me so that we both get the same?

United Kingdom	Examples	Can your child answer these questions?
I can count on in ones from any number up to 100.		Start at the number 47, and then count on until you reach 100.
I can count back in ones from any number up to 100.		Start at the number 59 and then count back to 0
I can say one more than any number between 1-100	One more than 45 is 46.	What is one more than __? There are seventy beads in this pot. If I put one more in the pot how many would there be?
I can say one less than any number between 1-100	One less than 39 is 38 .	What is one less than \qquad ? There are thirty-seven beads in the pot. I am taking one bead out of the pot now - how many are left?
I can count in twos	2, 4, 6, 8, 10...	How far can you count in twos? What number would follow in this sequence: 6,8,10,12...? How far can you continue the sequence? What about this sequence? $18,16,14, \ldots$ What would come next? Can you get back to 0 ?
I can count in tens	10, 20, 30, 40...	How far can you count in tens? What number would follow in this sequence: $40,50,60, \ldots$. ? How far can you continue the sequence? What about this sequence? $90,80,70, \ldots$ What would come next? Can you get back to 0 ?

Western Europe	Examples	Can your child answer these questions?
		How far can you count in fives? What number would follow in this sequence: 15,20, $25,30 . . . ? ~ H o w ~ f a r ~ c a n ~ y o u ~ c o n t i n u e ~ t h e ~ s e q u e n c e ? ~$
I can count in fives		What about this sequence? 35,30, 25, ...? What would come next? Can you get back to 0?
		What would you add to 3 to get a total of 7 ?

Eastern Europe	Examples	Can your child answer these questions?
I know by heart all number bonds that total 20	$\begin{aligned} & 0+20=20 \\ & 1+19=20 \\ & 2+18=20 \end{aligned}$ Up to.... $\begin{aligned} & 19+1=20 \\ & 20+0=20 \end{aligned}$ $20-19=1$ $20-18=1$	How many pairs of numbers which total 20 can you remember? What would you add to 4 to get a total of 20? Use number cards from 1 to 19 - can you pair the numbers which make 20?
I know by heart all bonds of multiples of 10 up to 100	$\begin{aligned} & 0+100=100 \\ & 10+90=100 \\ & 20+80=100 \\ & 30+70=100 \\ & 40+60=100 \\ & 50+50=100 \end{aligned}$ Up to... $\begin{aligned} & 90+10=100 \\ & 100+0=100 \end{aligned}$ $\begin{aligned} & 100-90=10 \\ & 100-80=20 \end{aligned}$	Look at these multiples of 10 ... which pairs give a total of 100 ? 0102030405060708090100
I know by heart doubles of all numbers to 20 and significant numbers to 100 (e.g. 2550 100)	$1+1=2$ (double 1) $2+2=4$ (double 2) Up to... $19+19=38$ (double 19) $20+20=40$ (double20)	I think of a number, then I halve it and get 15 , what number was I thinking of? Pick a number, and then double it. What is the largest number you can double? Explain how you know your answer is right... Roll 2 numbers on a die, add them together, and then double it. What must I double to get 16? 22? 36?
I know by heart all multiplication facts for 2 up to 2×12	$\begin{aligned} & 0 \times 2=0 \\ & 1 \times 2=2 \ldots \end{aligned}$ Up to $12 \times 2=24$	Which is the number before 16 in the $2 x$ table? What is the answer to 6×2 ? 9×2 ?
I know by heart all multiplication facts for 10 up to 10×12	$\begin{aligned} & 0 \times 10=0 \\ & 1 \times 10=10 \ldots \end{aligned}$ Up to $10 \times 12=120$	Which is the number before 80 in the $10 x$ table? What is the answer to $6 \times 10 ? 8 \times 10$?
I know by heart all multiplication facts for 5 up to 5×12	$\begin{aligned} & 0 \times 5=0 \\ & 1 \times 5=5 \ldots \end{aligned}$ Up to $5 \times 12=60$	Which is the number before 40 in the $5 x$ table? What is the answer to $6 \times 5 ? 8 \times 5$?

Africa	Examples	Can your child answer these questions?
I can recall 10 more and 10 less than a number to 100	$\begin{aligned} & 86+10=96 \\ & 54-10=44 \end{aligned}$ 10 more than 33 is 43 10 less than 28 is 18	What is 10 more than 16 ? What is 10 less than 38 ?
I know by heart halves of all numbers to twenty and significant numbers to 100 (e.g. 25,50, 100)	Halves of all the even numbers up to 20 Half 2 is 1 Half 4 is 2 Half 6 is 3 Up to... Half of 18 is 9 Half 20 is 10	I think of a number and double it, the answer is 18 , what number did I start with? What number must I halve to get 8 ? 13 ? 19 ? Mina has 22 stickers; she gives half of them to her brother - how many stickers does she give him? What is half of 50 ?
I know by heart all division facts for 2 up to 24	$\begin{aligned} & 20 \div 2=10 \\ & 18 \div 2=9 \ldots \end{aligned}$ Down to $0 \div 2=0$	What is the answer to $16 \div 2 ? 8 \div 2$? Which is the missing number: $? \times 2=18$? How do you know?
I know by heart all division facts for 10 up to 120	$\begin{aligned} & 100 \div 10=10 \\ & 90 \div 10=9 \ldots \end{aligned}$ Down to $0 \div 10=0$	What is the answer to $70 \div 10 ? 40 \div 10$? Which is the missing number: ? $\times 10=60$? How do you know?
I know by heart all division facts for 5 up to 60	$\begin{aligned} & 50 \div 5=10 \\ & 45 \div 5=9 \ldots \end{aligned}$ Down to $0 \div 5=0$	What is the answer to $35 \div 5$? $40 \div 5$? Which is the missing number: $? \times 5=25$? How do you know?
I can round 2-digit numbers to the nearest 10	26 rounds up to 30 45 rounds up to 50 21 rounds down to 20	What does 16 round to? What does 55 round to? What is the rule for rounding up and down? - if the digit in the ones place value column is between 0-4 (if number ends in a number between 0-4) round down - if the digit in the ones place value column is between 5-9 (if number ends in a number between 5-9) round up

Antarctica	Examples	Can your child answer these questions?
I know by heart all sums and differences of multiples of 10 to 100 (e.g. 100-40=60)	$\begin{aligned} & 60+30=90 \\ & 70+80=150 \\ & 20+90=110 \\ & 70-20=50 \\ & 90-60=30 \\ & 40-30=10 \end{aligned}$	Add 80 and 30 , tell me how you did it. Tell me all the number pairs you know with multiples of 10 which make 90. What is the difference between 20 and 80? Look at these multiples of 10 ... which pairs give a total of 100 ? 0102030405060708090100
I now by heart all number bonds that total 100	$\begin{aligned} & 63+37=100 \\ & 41+59=100 \\ & 17+83=100 \end{aligned}$	What must you add to 62 p to make $£ 1$? I cut 35 cm off a 1 m long piece of string. How much is left?
To know by heart doubles to 50 and multiples of 5 to 100	Double 15 is 30 Double 35 is 70 Double 28 is 56 Double 43 is 86	What is double 60? What is double 85? What is double 19? What is double 54?
I know by heart all multiplication facts for 3 up to 3×12	$\begin{aligned} & 0 \times 3=0 \\ & 1 \times 3=3 \ldots . . \end{aligned}$ Up to $3 \times 12=36$	Which is the number before 30 in the $10 x$ table? What is the answer to $6 \times 3 ? 8 \times 3$?
I know by heart all multiplication facts for 4 up to 4×12	$\begin{aligned} & 0 \times 4=0 \\ & 1 \times 4=4 . . . \end{aligned}$ Up to $4 \times 12=48$	Which is the number before 16 in the $4 x$ table? What is the answer to $6 \times 4 ? 9 \times 4$?
I know by heart all multiplication facts for 8 up to 8×12	$\begin{aligned} & 0 \times 8=0 \\ & 1 \times 8=8 . . . \end{aligned}$ Up to $8 \times 12=96$	Which is the number before 56 in the $8 x$ table? What is the answer to $6 \times 8 ? 5 \times 8$?

Australasia	Examples	Can your child answer these questions?
I know by heart all division facts for 3 up to 36	$\begin{aligned} & 36 \div 3=12 \\ & 33 \div 3=11 \\ & 30 \div 3=10 \end{aligned}$ Down to $3 \div 3=1$	What is the answer to $18 \div 3$? $21 \div 3$? Which is the missing number? $\times 3=15$? How do you know?
I know by heart all division facts for 4 up to 48	$\begin{aligned} & 48 \div 4=12 \\ & 44 \div 4=11 \\ & 40 \div 4=10 \end{aligned}$ Down to $4 \div 4=1$	What is the answer to $16 \div 4$? $27 \div 3$? Which is the missing number? $\times 4=24$? How do you know?
I know by heart all division facts for 8 up to 96	$\begin{aligned} & 96 \div 8=12 \\ & 88 \div 8=11 \\ & 80 \div 8=10 \end{aligned}$ Down to $8 \div 8=1$	What is the answer to $16 \div 8$? $56 \div 8$? Which is the missing number? $\times 8=64$? How do you know?
I know halves of multiples of 10 to 100	Half of $100=50$ Half of $90=45$ Half of $80=40$ Down to Half of $10=5$	What is half of 70? I share 50 books equally between two classes. How many books does each class get?
I can find 100 more and 100 less than a number up to 1000 .	100 more than 324 is 424. 100 less than 867 is 767 .	What is 100 more than 443? What is 100 less than 329 ?
I can round 3-digit numbers to the nearest 100	126 rounds down to 100 456 rounds up to 500 941 rounds down to 900	What does 169 round to? What does 514 round to? What is the rule for rounding up and down? - if the digit in the tens place value column is between 0-4 (if number ends in a number between 0-4) round down - if the digit in the tens place value column is between 5-9 (if number ends in a number between 5-9) round up

Asia	Examples	Can your child answer these questions?
I know by heart all multiplication facts for 6 up to 6×12	$\begin{aligned} & 0 \times 6=0 \\ & 1 \times 6=6 \ldots \end{aligned}$ Up to $12 \times 6=72$	Which is the number before 36 in the $6 x$ table? What is the answer to $6 \times 6 ? 8 \times 6$?
I know by heart all multiplication facts for 7 up to 7×12	$\begin{aligned} & 0 \times 7=0 \\ & 1 \times 7=7 \ldots \end{aligned}$ Up to $12 \times 7=84$	Which is the number before 35 in the $7 x$ table? What is the answer to $6 \times 7 ? 8 \times 7$?
I know by heart all multiplication facts for 9 up to 9×12	$\begin{aligned} & 0 \times 9=0 \\ & 1 \times 9=9 \ldots \end{aligned}$ Up to $12 \times 9=108$	Which is the number before 54 in the $9 x$ table? What is the answer to 6×9 ? 9×9 ?
I know by heart all multiplication facts for 11 up to 11×12	$\begin{aligned} & \hline 0 \times 11=0 \\ & 1 \times 11=11 \ldots \end{aligned}$ Up to $12 \times 11=132$	Which is the number before 55 in the 11x table? What is the answer to $6 \times 11 ? 5 \times 11$?
I know by heart all multiplication facts for 12 up to 12×12	$\begin{aligned} & 0 \times 12=0 \\ & 1 \times 12=12 \ldots . \end{aligned}$ Up to $12 \times 12=144$	Which is the number before 60 in the $12 x$ table? What is the answer to $6 \times 12 ? 5 \times 12 ?$
I can double any 2digit number	Double $26=52$ Double $97=194$	Which numbers are missing in this sequence? 17, 34, \qquad ? I think of a number and half it - the answer is 55 . Which number was I thinking of? How do you know?

Arctic Circle	Examples	Can your child answer these questions?
I know by heart all division facts for 6 up to $72 \div 6$	$\begin{aligned} & 60 \div 6=10 \\ & 54 \div 6=9 \ldots \end{aligned}$ Down to $0 \div 6=0$	What is the answer to $36 \div 6$? 48 $\div 6$? Which is the missing number: ? $\times 6=24$? How do you know?
I know by heart all division facts for 7 up to $84 \div 7$	$\begin{aligned} & 70 \div 7=10 \\ & 56 \div 7=8 \ldots \end{aligned}$ Down to $0 \div 7=0$	What is the answer to $35 \div 7$? 49:7? Which is the missing number: $? \times 7=28$? How do you know?
I know by heart all division facts for 9 up to $108 \div 9$	$\begin{aligned} & 90 \div 9=10 \\ & 81 \div 9=9 \ldots \end{aligned}$ Down to $0 \div 9=0$	What is the answer to $36 \div 9$? 72 $\div 9$? Which is the missing number: $? \times 9=27$? How do you know?
I know by heart all division facts for 11 up to $132 \div 11$	$\begin{aligned} & 77 \div 11=7 \\ & 66 \div 11=6 \ldots . . \end{aligned}$ Down to $0 \div 7=0$	What is the answer to $11 \div 11$? $66 \div 11$? Which is the missing number: $? \times 11=88$? How do you know?
I know by heart all division facts for 12 up to $144 \div 12$	$\begin{aligned} & 72 \div 12=6 \\ & 60 \div 12=5 \ldots \end{aligned}$ Down to $0 \div 12=0$	What is the answer to $12 \div 121$? $84 \div 12$? Which is the missing number: $? \times 12=108$? How do you know?
I can round a number up to 1 decimal place to the nearest whole number	256.6 rounds to 257 99.9 rounds to 100	What does 145.3 round to? What does 148.8 round to?

Central America	Examples	Can your child answer these questions?
I can multiply and divide whole numbers and those involving decimals by 10,100 \& 1000	$\begin{aligned} & 2672.6 \times 10= \\ & 26726 \\ & 2672.6 \div 100= \\ & 26.76 \\ & 2672.6 \div 1000= \\ & 2.676 \end{aligned}$	What is 22.345×10 ? 100? 1000? What is $2456.8 \div 100$? 10 ? 1000 ?
I can halve any number with up to one decimal place	Half of 12.4 is 6.2 Half of 54.6 is 27.3	What is half of 24.6? What is half of 67.4?
I can count up and down in tenths	$\begin{gathered} \hline 3 / 10,4 / 10,5 / 10 . . \\ 0.8,0.9,1.0,1.1 \ldots \\ 9 / 10,8 / 10,7 / 10 . . . \\ 1.2,1.1,1.0,0.9 . . \end{gathered}$	Continue the sequence... $\begin{gathered} 3 / 10,4 / 10,5 / 10 \ldots \\ 0.8,0.9,1.0,1.1 \ldots \\ 9 / 10,8 / 10,7 / 10 \ldots \\ 1.2,1.1,1.0,0.9 \ldots \end{gathered}$
I can count forwards in steps of powers of 10 for any given number up to 1,000,000		Continue the sequence... $\begin{aligned} & 54,64,74,84 \\ & 15,500 \quad 16,500 \quad 17,500 \\ & 121,000 \quad 131,000 \quad 141,000 \end{aligned}$
I can count backwards in steps of powers of 10 for any given number up to 1,000,000		Continue the sequence... $\begin{aligned} & \begin{array}{l} 98,78,68,58 \\ 19,100 \\ 18,100 \quad 17,100 \\ 275,000 \quad 265,000 \quad 255,000 \end{array} \end{aligned}$ \qquad
I can multiply any multiple of 10 by a single digit number	$\begin{aligned} & 50 \times 3=150 \\ & 80 \times 4=320 \\ & 90 \times 6=540 \end{aligned}$	What is 70×5 ? 80×3 ?

North America	Examples	Can your child answer these questions?
I can recall all multiplication and division facts for all multiplication tables up to 12×12	1×1 to 12×12 And $144 \div 12$ to $1 \div 1$	What is the answer to $63 \div 7$? 48 \div ? Which is the missing number: $? \times 8=24$? How do you know? What is the answer to $36 \div 9$? 72 \div ? Which is the missing number $_\div 9=3$? How do you know?
I can halve any 2-digit number	Half of 42 is 21 Half of 74 is 37 Up to Half of 98 is 49	What is half of 46? Can you share 62 equally?
I can double any number with up to 1 decimal place	Double 4.2 is 8.4 Double 9.8 is 19.6	What is double 3.5?
I know by heart all the squares of numbers between 1 and 12 and use the notation for squared $\left(^{2}\right)$	$\begin{aligned} & 1^{2}=1 \\ & 2^{2}=4 \\ & 3^{2}=9 \\ & 4^{2}=16 \\ & 5^{2}=25 \\ & 6^{2}=36 \\ & 7^{2}=49 \\ & 8^{2}=64 \\ & 9^{2}=81 \\ & 10^{2}=100 \\ & 11^{2}=132 \\ & 12^{2}=144 \end{aligned}$	What is 3 squared? I multiply a number by itself and get 36 . What number did I start with?
I can multiply 3 single digit numbers	$\begin{aligned} & 1 \times 2 \times 3=6 \\ & 2 \times 3 \times 4=24 \\ & 8 \times 3 \times 2=48 \\ & \text { etc. } \end{aligned}$	
I can count forwards and backwards with positive and negative numbers through 0		Continue counting up from-3 Count back from 8 to - 8 .

South America	Examples	Can your child answer these questions?
I can identify the highest common factor of two numbers	A common factor is a factor that is shared by two or more numbers	What is the highest common factor of 8 and 12?
	A common factor of 8 and 10 is 2.	

Globetrotter	Examples	Can your child answer these questions?
I can convert between decimals and fractions	$\begin{aligned} & 0.5=\frac{1}{2} \\ & 0.25=\frac{1}{4} \\ & 1 / 8=0.125 \\ & 1 / 6=1.667 \end{aligned}$	What is $3 / 5$ as decimal? What is 0.4 as a fraction?
I can convert between decimals and percentages	$\begin{aligned} & 0.25=25 \% \\ & 0.5=50 \% \\ & 0.79=79 \% \\ & 75 \%=0.75 \\ & 33 \%=0.33 \\ & 57 \%=0.57 \end{aligned}$	What is 0.2 as a percentage? What is 85% as a decimal?
I can convert between percentages and fractions	$\begin{aligned} & \frac{3}{4}=75 \% \\ & \frac{1}{2}=50 \% \\ & \\ & 80 \%=4 / 5 \\ & 62.5 \%=5 / 8 \end{aligned}$	What is $1 / 3$ as a percentage? What is 60% as a fraction?
I can convert improper fractions to mixed numbers	$\begin{aligned} & 1 \frac{1}{2}=3 / 2 \\ & 3 \frac{3}{4}=15 / 4 \\ & 11 / 3=3 \frac{2}{3} \end{aligned}$	What is $1 \frac{1}{4}$ as a mixed number? What is $\frac{7}{2}$ as a mixed number?
I know by heart all squares of multiples up to 100 squared	30^{2} is 900 etc .	What would be the answer to 40 squared? Can you explain how you got your answer?
I can recognise and use cubed numbers and the notation for cubed (${ }^{3}$)	$\begin{aligned} & \hline 1^{3}=1 \\ & 2^{3}=8 \\ & 3^{3}=27 \\ & 4^{3}=64 \\ & 5^{3}=125 \\ & 6^{3}=216 \\ & 7^{3}=343 \\ & 8^{3}=512 \\ & 9^{3}=729 \\ & 10^{3}=1000 \\ & 11^{3}=1331 \\ & 12^{3}=1728 \end{aligned}$	What is 3 cubed? I cube a number and the answer is 125 . What number did I start with?

